Главная / Пресс-центр / Новости / В Москве прошел RAIF Hackathon 2018 с призовым фондом более 1 000 000 рублей

В Москве прошел RAIF Hackathon 2018 с призовым фондом более 1 000 000 рублей

Новости по теме

23 октября в рамках масштабного делового форума RAIF (The Russian Artificial Intelligence Forum) состоялся финал RAIF Hackathon 2018. Участники соревнования решали реальные бизнес-задачи с применением технологий ML/AI. Партнерами хакатона выступили компании «Утконос», Росреестр и НЛМК, которые предоставляли обезличенные бизнес-данные.

RAIF Hackathon 2018 включал в себя два этапа. В рамках отборочного онлайн-тура, который прошел с 5 по 19 октября, было получено 322 заявки от разработчиков из разных городов России. Работы оценивало квалифицированное жюри, в состав которого вошли эксперты крупных компаний российского рынка.

Команды распределились по трем номинациям:

  • Оптимизация процессов производства (НЛМК)
  • Анализ спроса на товары (Утконос)
  • Прогнозирование кадастровой стоимости объектов (Росреестр)

В финал прошли 42 команды в номинации от НМЛК, 4 команды — в номинации от «Утконос» и 5 команд — в номинации от Росреестра.

В рамках финального офлайн-соревнования, прошедшего 23 октября на площадке второго российского форума по системам искусственного интеллекта RAIF 2018, участникам были выданы дополнительные данные. После почти 4 часов кодинга и дальнейшей защиты проектов в творческих номинациях, жюри определило победителей.

hackathon_fin2.jpg

В номинации Росреестра финалистом стала команда r_test. Ребята провели глубокий анализ внешних данных и использовали такие параметры, как расстояние до ближайшей ж/д станции, водоёма и до точек интереса (POI).

Команда Help The Platipus, решившая задачу от «Утконос» и ставшая победителем в этой номинации, сфокусировалась на анализе групп сопутствующих товаров и групп товаров-заменителей. Также была оценена экономическая эффективность решения.

В номинации НЛМК победа была определена по абсолютному показателю — максимальной прогностической точности ML-модели. В результате упорной борьбы полуфинала среди 30 команд, победу одержала команда Keksik.

Призовой фонд более 1 000 000 рублей был разделен между победителями — каждая команда получила по 350 тысяч рублей.

По завершении хакатона состоялась техническая секция, ведущим которой выступил Виктор Кантор, автор курса Data Mining in Action. Ученые, математики и эксперты Data Science ведущих российских компаний поделились опытом и новейшими кейсами в сфере ML/AI.

Константин Воронцов (МФТИ) рассказал о тематических векторных представлениях текстов, графов и транзакционных данных. Эмели Драль (Mechanica.AI) выступила с докладом об искусственном интеллекте в сфере производства, что было особенно интересно после задачи от НЛМК по оптимизации производственных процессов в рамках хакатона. Николай Князев (Инфосистемы Джет) провел сравнение метрик бизнеса и машинного обучения. Выбор правильной метрики был одним из параметров, по которым определялся победитель в номинации «Утконос». Алексей Драль (BigData Team) раскрыл тему массового обучения по Big Data. Дмитрий Бугайченко (Одноклассники) познакомил присутствующих с построением витрины контента с помощью потокового анализа данных и обучения с подкреплением. Алексей Каткевич (Инфосистемы Джет) поделился с участниками, как правильно переносить ML-модели в продуктив, а Евгений Бурнаев (Сколтех) привел кейсы по обнаружению аномалий и прогнозу неисправностей на транспорте.

Партнерами RAIF 2018 выступили компании IBM, Huawei, NetApp, Cisco, Лаборатория Касперского, Solar-Ростелеком, Nextail и Dbrain.

Читайте также:

Журнал JETINFO

В основе материалов журнала — реальный опыт и обширные знания экспертов отрасли — специалистов компании «Инфосистемы Джет», ее заказчиков и партнеров.

Подробнее

Сайт использует файлы cookies. Продолжая использование настоящего сайта, вы выражаете своё согласие на использование файлов cookies в соответствии с Политикой обработки персональных данных. В случае несогласия с обработкой ваших персональных данных вы можете отключить сохранение cookie в параметрах настройки вашего браузера.


Читать полностью